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Abstract

Purpose – The purpose of this paper is to evaluate the capacity of two equation turbulence models to
reproduce mean and fluctuating quantities in the case of both natural convection and isothermal flows.

Design/methodology/approach – Numerical predictions of mean velocity profiles, air and wall
temperatures as well as turbulent kinetic energy by three different two equation models (standard k-1,
renormalisation group k-1 and shear-stress transport-k-v) are compared with corresponding
experimental values.

Findings – The prediction of mean velocities and temperatures is in all cases satisfactory. On the
other hand, the prediction of turbulent quantities is less precise.

Originality/value – The three models under consideration in this paper can be used for engineering
applications such as HVAC calculations.
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Paper type Research paper

Nomenclature
Cm ¼ empirical constant in turbulence

model
Cp ¼ specific heat
g ¼ gravitational acceleration
H ¼ height of cavity
h ¼ height of the inlet (forced convection)
K ¼ thermal conductivity
k ¼ turbulent kinetic energy
Keff ¼ effective thermal conductivity
L ¼ length of cavity
p ¼ pressure
Ra ¼ Rayleigh number,

Ra ¼ gbDT H 3/(an)
Rey ¼ turbulent Reynolds number based on

y ¼ yk
1
2/n

Re ¼ Reynolds number
Rt ¼ turbulent Reynolds number
Sij ¼ large scale strain rate

T ¼ temperature
t ¼ height of the outlet (forced convection)
Tc ¼ cold wall temperature
Th ¼ hot wall temperature
v ¼ velocity component in y-direction

(natural convection)
u ¼ velocity component in x-direction

(natural convection)
U ¼ velocity component in x-direction

(forced convection)
Uin ¼ velocity inlet (forced convection)
V0 ¼ buoyancy

velocity,V 0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbHðTh 2 TcÞ

p
W ¼ width of cavity
w ¼ width of the inlet (forced convection)
xi ¼ Cartesian space coordinates

(i ¼ 1, 2, 3)
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Greek symbols
a ¼ thermal diffusivity
b ¼ thermal expansion coefficient
DT ¼ temperature difference DT ¼ ðTh 2

TcÞ
1 ¼ dissipation rate of k
n ¼ kinematic viscosity
nt ¼ turbulent viscosity, nt ¼ Cmk 2=1
r ¼ fluid density

tw ¼ wall shear stress
v ¼ specific dissipation rate of k

Subscripts
LRN ¼ low Reynolds number
RNG ¼ re-normalisation group
SST ¼ shear stress transport
enh ¼ enhanced
wf ¼ wall function

1. Introduction
Confined turbulent flows occur in many natural situations and industrial applications.
Increasingly, such flow fields are analysed using CFD codes with various turbulence
models of different complexity. Evidently, the usefulness of such codes is conditioned
by their capacity to reproduce experimental data. Two types of confined flows have
been used extensively for such comparisons: the buoyancy-driven flow in an enclosure
with differentially heated vertical walls (natural convection) and the isothermal forced
flow in an air filled cavity.

Natural convection in differentially heated enclosures constitutes a reference
problem used extensively to test and evaluate different models and solution algorithms
included in CFD codes. Thus, Peng and Davidson (2000) investigated the performance
of low Reynolds number (LRN) k-v models for predicting buoyancy affected flows in
cavities by comparison with LRN k-1 models and with experiments. They reported that
for natural convection in a tall cavity with Ra ¼ 5 £ 1010 none of the analysed models
were able to produce a grid-independent solution. This problem was eliminated by
introducing a damping function into the buoyant source term in the k-equation.
Liu and Wen (1999) developed a buoyancy-modified turbulence model based on the
four-equation model (ðk 2 12 u2 2 1uÞ) and tested it in buoyancy-driven cavity flows
by comparison with experimented data and the predictions from three other turbulence
models. They reported that this model demonstrated significant improvements in
capturing the anisotropy of Reynolds stresses and turbulent heat flux in vertical
boundary layers. Peng and Davidson (2001) investigated the buoyant flow in a
cavity for a relatively low-turbulence level (Ra ¼ 1.58 £ 109) by means of large eddy
simulation. The numerical predictions for the mean flow quantities are in good
agreement with experimental values but less accurate for turbulence statistics,
particularly in the outer region of the near-wall flow where the boundary layer
interacts with the recirculating core region. Dol and Hanjalic (2001) studied turbulent
natural convection in a near-cubic enclosure at high-Rayleigh number
(Ra ¼ 4.9 £ 1010). The turbulence models used to close the RANS equations were a
LRN k-1 model and a second-moment closure (SMC). Their results showed that the
SMC was better in capturing thermal three-dimensionality effects and strong
streamline curvature in the corners. The LRN k-1 model provided reasonable
predictions of the first moments away from the corners. Recently, Joubert et al. (2005)
compared the prediction of seven different modelling approaches for turbulent natural
convection and pollutant diffusion in a 2D partially partitioned cavity. They reported
significant differences between the predictions for mean temperature, velocity and
kinetic energy profiles. The corresponding computed Nusselt numbers at the walls lie
within a ^25 per cent range.

HFF
19,1

6



Similarly, isothermal forced flow in an air filled cavity has also been studied
extensively with CFD codes. Chen and Xu (1998) applied a zero equation model in order
to simulate indoor airflow. They indicated that the zero equation model requires less
computing time than the k-1 models but its predictions are far from the experimental
data of Nielsen et al. (1978) when the inlet width is comparable to that of the cavity.
Chen (1995) applied five different low-Reynolds number two equation models in order
to predict forced convection in a room; the Reynolds number at the inlet is 5,000. Their
predictions for the mean velocity agree broadly with the experimental data except for
those obtained by the two scale model. However, Chen considered that the flow is 2D
whereas the large eddy simulation of Davidson and Nielsen (1996) for the same room
indicated that it is 3D. Later, Chen (1996) applied three second order turbulent models
(Reynolds stress models) to predict air motion in the same room. His comparisons of
the predicted mean velocity with experimental data indicated that even the second
order models do not reproduce quantitatively the measured velocity profiles. Davidson
and Nielsen (1996) used large eddy simulation with two different subgrid models in the
3D ventilated cavity tested by Nielsen et al. (1978). They stated that the simple
Smagorinsky model was inadequate because of its dependence on the Smagorinsky
constant. On the other hand, the dynamic model predictions were in good agreement
with experimental data. It should be noted that none of these studies, which practically
considered all the levels of turbulence modelling, succeeded to reproduce
quantitatively the totality of the available experimental data. From an engineering
point of view, however, these predictions provide a good description of the simulated
airflow.

This methodology, i.e. the comparison of CFD predictions with experimental results
for either natural convection or isothermal forced flows, can lead to the selection of
different “best” models for each type of flow. However, in the case of HVAC
applications in buildings, the situation is more complex because of the variable
operation and dispersed character of heat sources and ventilation inlets. Thus, at any
given moment, the flow field can be dominated by forced convection in one part of the
building and by natural convection in another. Furthermore, in the same part of
the building forced convection dominates when the ventilation is on but natural
convection becomes predominant when it is turned off. It is therefore clear that, in order
to simulate such complex conditions, the flow model must be very robust and capable
of simulating equally well both natural convection and isothermal forced flows.

In view of this situation, the present study has been undertaken to evaluate the
capacity of two equation turbulence models to reproduce mean and fluctuating
quantities in the case of both natural convection and isothermal flow with the smallest
possible discretization grid. Specifically, three models are considered: the well known
k-1 by Launder and Spalding, the re-normalization group (RNG) k-1 formulation which
is widely used for engineering studies and the shear-stress transport (SST) k-v model.
In order to determine the accuracy of the wall shear stress predictions two different
near wall formulations are associated with each of the two k-1 models. The first one is
the standard wall function (near wall modelling) which introduces the effect of
turbulent viscosity starting from the first node of calculation. The second near wall
formulation combines the one equation model of Wolfstein (1969) near the wall to each
k-1 model. The evaluation is carried out by comparing numerical predictions of mean
velocity and temperature profiles, as well as turbulent quantities, with published
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experimental results for a differentially-heated cavity by Ampofo and Karayiannis
(2003) and for a ventilated isothermal cavity by Nielsen et al. (1978). The results
presented here are different and more detailed than our conference presentations (Omri
and Galanis, 2006a, b).

2. Description and modelling of the problem
The natural convection field used for validation was measured by Ampofo and
Karayiannis (2003) in an air-filled cavity with identical width and height
(W ¼ H ¼ 0.75 m) and a depth of 1.5 m. The isothermal vertical walls at x ¼ 0 and
x ¼ 0.75 m were maintained at Th ¼ 50 ^ 0.158C and Tc ¼ 10 ^ 0.158C, respectively.
The corresponding Rayleigh number is 1.58 £ 109. The top and bottom walls at y ¼ 0
and 0.75 m were made from 1.5 mm mild steel plates, insulated on the outside with
polystyrene and wood. The temperature of the surrounding air was controlled at
30 ^ 0.28C which is equal to the average of the hot and cold walls temperatures.
Through a well-controlled experimental setup, it was claimed that the flow field is 2D in
the middle of the spanwise direction where the measurements were made. It should be
noted that the dimensions of this cavity and the experimental conditions are identical to
those used by Peng and Davidson (2001) to validate their LES calculations. Therefore,
it is also possible to compare their numerical predictions with the present ones.

The forced convection field used for validation was measured by Nielsen et al. (1978)
in an air-filled parallelepipedic cavity with identical width and height
(W ¼ H ¼ 89.3 mm) and a length L ¼ 3H ¼ 258.9 mm. The air inlet was centred
near the top of one of the shorter walls at x ¼ 0. Its width and height were w ¼ 0.5 W
and h ¼ 0.056 H, respectively. The air outlet was near the bottom of the opposite short
wall at x ¼ L. Its width was equal to W and its height t ¼ 0.16 H. The Reynolds
number based on the inlet velocity and inlet height is 5,000.

For both geometries the xOz plane coincides with the horizontal floor of the cavity
and gravity acts in the negative y-direction.

The flow field in these cavities is modelled with the Reynolds averaged
Navier-Stokes equations. The molecular transport properties of the air are assumed to
be constant. Thus, the RANS equations for mass momentum and energy are:

›

›xi

ðuiÞ ¼ 0 ð1Þ

›

›xj

ðujuiÞ ¼ 2
1

r

›p

›xi

þ
›

›xj

ðnþ ntÞ
›uj

›xj

� �
þ bðT 2 T0Þgi ð2Þ

uj
›

›xj
ðrCpTÞ ¼

›

›xi
Keff

›T

›xi

� �
ð3Þ

In the case of the natural convection field the conduction equation is also solved in the
top and bottom three-layer walls with a uniform convection coefficient applied between
their outer surface and the surrounding air at 308C. On their inside surface, the air and
steel temperatures as well as the corresponding heat fluxes are equal. The thermal
conditions at x ¼ 0 and0.75 m are Th ¼ 508C and Tc ¼ 108C, respectively.

In the case of the isothermal forced flow only the continuity and momentum
equations are necessary since T ¼ T0 and the last term in equation 2 is zero.

HFF
19,1

8



The turbulence models used to close the RANS equations are the standard k-1
(Launder and Spalding, 1974), RNG k-1 (Yakhot and Orszag, 1986) and SST-k-v
(Menter, 1993, Menter et al., 2003) models. The reasons for these choices and the
principal characteristics of the models are:

. The standard k-1 model (Launder and Spalding, 1974) is well documented in the
literature. It is simple to implement and very robust. Among the many numerical
studies using this model, it is worth mentioning a recent analysis of turbulent
flow with heat and mass transfer in ice rinks (Bellache et al., 2005).

. The RNG k-1model has been used extensively in HVAC studies (Chen, 1995; Posner
et al., 2003; Dechang et al., 2005). It is similar to the standard k-1 model with an
additional term in the dissipation rate equation. The constants of the model were
determined using the renormalisation group theory (Yakhot et al., 1992). It includes
the effect of swirl on turbulence, thus enhancing its accuracy for such flows.

. The SST-k-v model is an amelioration of the Wilcox k-v model (Wilcox and
Traci, 1976). The latter is accurate for boundary layer flows (Shpak, 1994) with
moderate adverse pressure gradients but fails for flows with pressure induced
separation (Menter, 1993). On the other hand, the SST-k-v model has been
used successfully to predict flows with strong adverse pressure gradients and
separation (Menter et al., 2003). It is therefore expected to be particularly suited
for the isothermal flow with extensive reverse flow described by Nielsen et al.
(1978). Moreover, this model is a weakly non-linear model since the value of Cm in
the turbulent viscosity depends on the turbulence field (Quéré et al., 2003).

The SST-k-v model takes into account the effects of wall proximity. On the other
hand, the k-1 models are primarily valid for turbulent core flows. For the near-wall
region, they use empirical laws to express the mean velocity parallel to the wall and the
turbulence quantities outside the viscous sub-layer in terms of the distance from the
wall and wall conditions (such as wall shear stress and wall heat flux). Hence, the wall
functions can be used to provide near-wall boundary conditions for the momentum and
turbulence transport equations, rather than conditions at the wall itself, so that the
viscous sub-layer does not have to be resolved and the need for a very fine mesh is
circumvented. The commercial code used to solve this system of PDEs (Fluent, 2005)
offers the possibility of using standard wall functions or enhanced wall treatment.

The standard wall functions are based on the proposal of Launder and Spalding
(1974) and have been used widely for industrial flows. The variation of both mean
velocity and temperature is linear in the viscous sub-layer and logarithmic in the
region where turbulence dominates. In the commercial code used for the present study
(Fluent, 2005) these functions are expressed in terms of the following variables:

y* ¼
rCm 0:25k0:5

p yP

m
U * ¼

uPC0:25
m k0:5

p

tw=r
ð4Þ

where P is the grid point nearest to the wall. In the viscous sublayer (i.e. for
y * , 11.225) the appropriate relation is:

U * ¼ y* ð5aÞ

while the logarithmic law expressed as:
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U * ¼
lnð9:793y*Þ

0:4182
; ð5bÞ

is applied for y * . 11.225. These relations show that the velocity near the wall depends
on the local value of the turbulent kinetic energy. Therefore, for the k-1 models (with
the option to obtain wall boundary conditions from the k equation enabled) the k
equation is solved in the whole domain including the wall adjacent cells. The solution
of this equation requires the production and dissipation of k which are, respectively,
derived from the wall shear stress and from the local equilibrium hypothesis (near the
wall the production of k is equal to the dissipation rate). The boundary condition
imposed at the wall is (k/(n where n is the distance normal to the wall.

The enhanced wall treatment is a near wall modelling that combines the enhanced
wall functions proposed by Kader (1981) with a two layer model. Specifically, it uses
the one equation model of Wolfstein (1969) in the near wall region and the k-1 in the
fully turbulent region. The demarcation of the two regions is determined by a
wall-distance-based, turbulent Reynolds number, defined as Rey ¼ yk 1=2=v. The region
is fully turbulent when Rey . 200:

Therefore, this study uses four different combinations of turbulence models and
near-wall treatments as well as the shear stress model of Menter et al. (2003). They are
identified as k-eps-wf (k-1 with standard wall functions), k-eps-enh (k-1 with enhanced
wall treatment), k-rng-wf (k-1 RNG with standard wall functions), k-rng-enh (k-1 RNG
with enhanced wall treatment) and SST-k-1 (shear stress model).

3. Numerical solution
The coupled elliptic PDEs describing the flow field were discretized with the finite volume
method. The rectangular staggered grid is non-uniform in all directions: it is finer near the
walls where gradients are more important. Second order central discretization is used,
except for the convection terms where the third order Monotone Upstream-Centered
Schemes for Conservation Laws (MUSCL) is applied. This third-order convection scheme
(van Leer, 1979) was conceived from the original MUSCL by blending a central
differencing scheme and a second order upwind scheme. Compared to the second-order
upwind scheme, it can improve spatial accuracy by reducing numerical diffusion and is
available for all transport equations.

Grid independence was tested for each of the five combinations of turbulence models
and wall treatments by monitoring the variables and residuals during the iteration
process and by refining the non-uniform grid for the two flow cases under consideration.

For the 2D natural convection case four grids have been tested. Typical results are
shown in Figure 1(a) and in an earlier text (Omri and Galanis, 2006a). They indicate
that the maximum difference between k values predicted by the 30 £ 30 and
150 £ 150 grids is an acceptable 2.5 per cent. The corresponding differences for mean
velocity components and temperature are even lower as established by Peng and
Davidson (2001) for low-turbulence-level flows. It must be noted that the grid
independence tests shown in Figure 1 are more rigorous than corresponding tests
which compare mean velocity or temperature predictions since turbulent kinetic
energy is more sensitive to the number and distribution of the discretization nodes
(Peng and Davidson, 1988). In view of such results further calculations for this case
have been performed with the 30 £ 30 grid.
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For the 3D forced convection case, grid independence was tested in an earlier study
(Omri and Galanis, 2006b) for each of the five combinations of turbulence models and
wall treatments by comparing results calculated with four different grids
(30 £ 10 £ 30, 60 £ 10 £ 30, 30 £ 20 £ 30 and 30 £ 10 £ 60 nodes in the x, z,
and y-directions, respectively). The small number of grid points in the z-direction,
which is used to illustrate that the flow is 3D, was based on the fact that many previous
numerical studies of this flow field (Nielsen et al., 1978; Chen and Xu, 1998; Mora et al.,
2003) have obtained satisfactory results with a 2D representation. The number of grid
points in these three studies varies from a very coarse grid (6 £ 6 used to compare its

Figure 1.
Grid independence tests:

1a/Turbulent kinetic
energy for natural

convection at y/H ¼ 0.5;
1b/Horizontal velocity for

isothermal flow at
x/H ¼ 2, z/H ¼ 0

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/H

k
/(

V
o^

2)

Grid 150×150 SST-k-w

Grid 80×80 SST-k-w

Grid 50×50 SST-k-w

Grid 30×30 SST-k-w

(a)

(b)
–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

V
×

/V
in

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y/H

SST-k-w (30×10×30)
SST-k-w (60×120×60)
SST-k-w (200×60×100)

Turbulence
models

11



predictions with those of a zonal model) to a “fine” grid (40 £ 40). In particular,
Nielsen et al. (1978) used two grids (17 £ 20 and 39 £ 39) and reported differences of
up to 3 per cent between their predictions. They stated “that the magnitude of
uncertainty is likely to remain with all practically possible numbers of grid nodes”.
In view of this situation the number of nodes in the four grids used earlier is
reasonable. However, for the present purposes three more grids (30 £ 10 £ 30,
60 £ 20 £ 60 and 200 £ 60 £ 100) have been evaluated. Their predictions of
average velocity profiles at the three different positions where corresponding
experimental results are available were used to evaluate their effect. Particular
emphasis was placed on the magnitude and position of the maximum jet velocity as
well as on the extent and intensity of the experimentally determined reverse flow. Some
results of these comparisons are shown in Figure 1(b) which clearly shows that
the numerical predictions with these three grids are essentially the same. Based on
these comparisons all the results for this case presented here have been calculated with
30 £ 30 £ 10 nodes. The distribution of these nodes is such that the calculation
domain contains 6 £ 6 nodes vis-à-vis the inlet ðjzj , w=2 and H 2 h , y , H Þ:
However, at the inlet itself (x ¼ 0) the resolution was increased by adding six
additional nodes in both the y and z-directions.

As shown in the next sections, these grids provide numerical predictions
comparable to those reported in other numerical studies and in good agreement with
measured values. Therefore, the chosen discretization is perfectly adequate for
engineering calculations such as those related to HVAC applications.

4. Results and discussion
4.1 Natural convection
4.1.1 Mean velocity and mean temperature predictions. The non-dimensional mean
temperature profiles and the profiles of the non-dimensional mean vertical velocity
calculated by each of the five models under consideration are qualitatively similar. They
indicate that the flow field consists of a relatively narrow boundary layer along the vertical
walls and a nearly stagnant core region (from x/H < 0.15 to x/H < 0.85) where the
temperature decreases almost linearly as the distance from the hot wall increases. All these
numerical results are in as good agreement with the corresponding measured values as
those calculated with LES by Peng and Davidson (2001). However, this agreement is not
uniform throughout the cavity. Thus, Figure 2 shows that all five models give essentially the
same temperature profiles at mid-height ( y/H ¼ 0.5) but predict very different temperatures
at y/H ¼ 0.2 and 0.8. This observation indicates the importance of extending the
comparisons to the entire cavity, in particular to see the effect of the horizontal boundary
layers along the top and bottom walls. Near the bottom of the cavity and at mid-height they
all under predict the temperature in the core region (0.15 , x/H , 0.85). Near the top, the
k-eps-wf under predicts slightly the core temperature while the two formulations using the
enhanced wall treatment over predict this temperature. In the ascending boundary layer,
the agreement between calculated and measured values is fairly good at mid-height, even if
k-1-enh, k-1-RNG-enh and SST-k-v slightly under predict the dimensionless temperature
near x/H ¼ 0.01. Near the bottom of the cavity the calculated values in the boundary layer
do not agree as well with the measurements. At this last position the k-eps-wf over predicts
the air temperature while the two formulations using the enhanced wall treatment under
predict it. Near the top of the cavity the k-rng-wf provides the best prediction of the
increasing temperature near the hot wall.
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Figure 3 shows that all five formulations give identical predictions for the vertical velocity
in the core region and are in excellent agreement with the corresponding measured values.
On the other hand, in the ascending boundary layer their predictions differ considerably.
At y/H ¼ 0.2 the k-rng-wf gives the best estimate of the increasing velocity. However,
at this height all five models over predict the position of the maximum velocity. At the two
other heights the position of the maximum is predicted satisfactorily by all models.
At mid-height, both the k-1 and the k-RNG models associated with the wall function
correction overestimate the thickness of the boundary layer and the magnitude of the
dimensionless velocity for 0.03 , x/H , 0.06. On the other hand, the three other
formulations (k-1-enh, k-1-RNG-enh and SST-k-v) underestimate the dimensionless
velocity for 0.01 , x/H , 0.025 but provide a good estimate of the boundary layer
thickness at this height. It should be noted that the k-eps-wf model over predicts the
increasing velocity at all heights while the two formulations using the enhanced wall
treatment under predict this velocity at all three heights. As a result the former over
predicts the thickness of the boundary layer while the other two underestimate it.
The work of Holling and Herwig (2005), who proposed new boundary layer laws for
natural convection, is particularly significant in light of these results.

It is particularly important to note that the two formulations using the enhanced
wall treatment give identical results for both the temperature and velocity at all three
heights. This result is due to the fact that the level of turbulence is quite low in this
particular case (Peng and Davidson, 2001) so that Rey , 200. Consequently, it is the
one equation model which is applied throughout the domain in this particular case and
the distinction between k-eps-enh and k-rng-enh is meaningless for this flow.

Figure 4 compares the calculated non-dimensional temperature of the two
horizontal walls with the corresponding measurements. Overall, the k-1-wf formulation
gives the best estimates, especially near the hot side (x/H ¼ 0) of the bottom wall and

Figure 2.
Thermal boundary layer
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(a) y/H ¼ 0.8; (b)
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near the cold side (x/H ¼ 1) of the top wall where the temperature gradients are
highest. It is followed by k-1-RNG-wf, SST-k-v, and the two models using the enhanced
wall treatment. All five formulations fail to reproduce the data for the top wall near the
hot side (x/H ¼ 0). In this region, the temperature is overestimated by almost 28C by all
five models while the difference between their predictions is less than 0.58C. This
observation is consistent with the remark by Peng and Davidson (2001) who indicated
that, contrary to LES, two equation models do not reproduce accurately the flow details
in the corners of the cavity. It should also be mentioned that radiative exchanges
between the inside surfaces of the cavity (which have not been included in any of the
studies mentioned in the present paper) would tend to lower the temperature of the top
wall and increase that of the bottom one. Thus, the inclusion of radiation would likely
reduce the differences between the measured and calculated values in Figures 2 and 4.

Finally, Figure 5 compares calculated and measured mean air temperatures at the
mid-section (x/H ¼ 0.5) of the cavity. It is clear that the k-1-wf and SST-k-v
formulations give the best predictions. On the other hand, the two formulations using
the enhanced wall treatment and the k-1-RNG-wf model give the least satisfying
predictions of this variable. With respect to this temperature profile it is important to
mention that the two inflexion points near the upper and lower walls are a result of the
fact that these walls are conductive. Indeed, numerical studies (Aounallah et al., 2005)
which consider that the inner surface of these walls are adiabatic obtain a
monotonically increasing temperature distribution from y/H ¼ 0 to 1.

4.1.2 Turbulence quantities. Figure 6 shows the experimental values of the
non-dimensional turbulent kinetic energy at three heights of the cavity with

Figure 3.
Hydrodynamic boundary
layer near the hot wall at
three different heights:
(a) y/H ¼ 0.8; (b) y/H ¼ 0.5;
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corresponding numerical results. It should be noted that the two wall function
formulations (k-1-wf and k-1-RNG-wf) do not reproduce correctly the asymptotic
behaviour of k near the walls since these wall functions assume a constant value of tw

throughout the viscous sublayer. Thus, they predict that k – 0 at the walls. On the other
hand, the other three formulations (k-1-enh, k-1-RNG-enh and SST-k-v) give k ¼ 0 at the
walls and a nearly parabolic profile (k , y 2) near the walls. This last prediction
is in agreement with the corresponding result for the boundary layer of a flat plate
(Speziale et al., 1992).

Figure 4.
Temperature distribution
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Figure 5.
Temperature distribution
at x/H ¼ 0.5 (natural
convection)
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Figure 6.
Turbulent kinetic energy
at three different heights:
(a) y/H ¼ 0.8; (b) y/H ¼ 0.5;
(c) y/H ¼ 0.2 (natural
convection)
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Figure 6 shows that at mid-height the measured values near the hot and cold walls are
not equal unlike the calculated results. It also indicates that the predicted maxima of
k=V 2

0 are in all cases considerably lower than the corresponding experimental results
and their predicted position is further away from the hot wall than the corresponding
measured values. Table I shows the maximum value of k=V 2

0 and its position as
calculated by each of the five formulations used here as well as the corresponding
results of LES calculations by Peng and Davidson (2001) and experimental data. It is
clear that the SST-k-v gives the best estimate of the maximum value while all the other
formulations, including LES, predict a value approximately 30 per cent below the
experimental result. The SST-k-v and the two formulations using the enhanced wall
treatment give a good estimate for the position of the maximum value. On the other
hand, the k-1-wf, k-1-RNG-wf and LES of Peng and Davidson (2001) overestimate this
position by approximately 50 per cent. Based on a combination of these observations,
the best performance at mid-height is obtained by the SST-k-v model followed by the
two formulations using the enhanced wall treatment.

At the other two heights ( y/H ¼ 0.2 and 0.5) the two formulations using the
enhanced wall treatment give the best estimate of k in the core region. On the other
hand, none of the five formulations under consideration give an entirely satisfactory
representation of the k profile near the hot and cold walls for these two heights. Near
the bottom left corner and the top right corner of the cavity the predicted increase of k
from its very small core value is much steeper than the corresponding measured
gradient. However, at these two positions the maximum values of k predicted by all
five models are in fairly good agreement with the corresponding measured values.
On the other hand, near the top left corner and the bottom right corner (where values of
k are higher than at the other two corners) the predicted gradient of k is closer to the
experimental result. However, at these two positions the maximum values of k
predicted by all five models are smaller than the corresponding measured values.

4.2 Isothermal flow
4.2.1 Mean velocity predictions. Figure 7 shows the measured and calculated horizontal
component of the velocity at two different distances from the air inlet in the symmetry
plane (z ¼ 0) of Nielsen et al.’s (1978) parallelepipedic cavity.

Figure 7(a) shows the results at x/H ¼ 1 calculated with the k-1 model. They show
that the two wall treatments under consideration do not have any significant influence
on the calculated velocity profile, except in the lower part of the cavity where they both

Exp. data
Ampofo and
Karayiannis

(2003)

LES
(Peng and
Davidson,

2001) SST-k-v k-1-enh k-1-RNG-enh k-1-wf k-1-RNG-wf

Max. of k=V 2
0 0.00445 <0.0038 * 0.0032 0.0029 0.0029 0.0031 0.003

Position of max
k=V 2

0 0.0133 <0.013 * 0.014 0.014 0.014 0.021 0.021

Note: *These are approximate values obtained by digitalizing graphical data in Peng and Davidson
(2001)

Table I.
Comparisons of

turbulence quantities
(natural convection) at

mid-height
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overestimate the importance of the backflow. It is noted that the numerical results
underestimate the peak jet velocity and overestimate its width. The corresponding
results calculated with the k-1-RNG-wf (not shown here for lack of space) and
k-1-RNG-enh (Figure 7(b)) formulations give better estimates of both the peak jet

Figure 7.
Horizontal velocity
profiles at z/W ¼ 0
(isothermal flow)
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velocity and its width. However, the k-1-RNG-wf overestimates considerably the
importance of the backflow for y/H , 0.3. Thus, the differences between the two wall
treatments under consideration are more pronounced in the case of the k-1-RNG model
than in the case of the standard k-1 model. Finally, the corresponding profile predicted
by the SST-k-v model (Figure 7(b)) is for all practical purposes identical to the one
predicted by the k-1-RNG-enh formulation. These two profiles are the closest to the
measured one. The corresponding predictions of 3D LES with a 102 £ 52 £ 52 mesh
(Davidson and Nielsen, 1996) give a good estimate of the maximum jet velocity but
underestimate considerably its width. They also underestimate considerably the
negative velocities (reverse flow) for y/H , 0.15.

Figure 7(c) shows analogous results further away from the air inlet (x/H ¼ 2)
calculated with the k-1-RNG-wf, k-1-RNG-enh and SST-k-v formulations. It is again
noted that all three formulations underestimate the peak jet velocity. However, the
SST-k-v model gives a good estimate of the jet’s width while the two RNG formulations
overestimate it. The corresponding profiles predicted by the k-1-wf and k-1-enh
formulations (not shown here for lack of space) are essentially identical. In these two
cases the underprediction of the peak jet velocity and overestimation of its width is
more important than in Figure 7(c). The negative velocities in the lower third of the
cavity predicted by these two standard k-1 formulations are however in closer
agreement with the measured values than the results in Figure 7(c). The corresponding
LES predictions by Davidson and Nielsen (1996) give a good estimate of the maximum
jet velocity but overestimate the extent of the region with positive velocities. They also
overestimate the magnitude of the negative velocities for y/H , 0.2.

In view of these comparisons between experimental values, the present numerical
results and those by Davidson and Nielsen (1996) we conclude that there is no
advantage in using LES with a much denser grid for the flow under consideration. For
engineering problems, such as HVAC applications, any of the two equations models
investigated in this paper provide acceptable results.

Figure 8 shows the profiles of the horizontal velocity component at z/W ¼ 20.4 and
x/H ¼ 2. It should be noted that the measured values are very different from those
in the symmetry plane (Figure 7(c)). Therefore, the flow field is not 2D as assumed in
some previous studies. The k-1-enh formulation underestimates considerably the
maximum positive velocity near the top wall while the k-1-RNG-enh gives the best
estimate of this quantity. However, all three formulations overestimate the distance of
this maximum value from the top wall. The position of zero velocity slightly below the
midheight of the cavity is best predicted by the k-1-enh formulation. On the other hand,
in the lowest fifth of the cavity where the most important negative velocities have been
measured, the best results are obtained by the SST-k-v formulation.

It is quite evident that in the case of this isothermal flow the two models using the
enhanced wall treatment do not predict identical results, as was the case for the natural
convection flow analysed in Section 4.1. This indicates that the level of turbulent
intensity is in the present case considerable. Therefore, the one equation model of
Wolfstein (1969) is not applied far from the wall as was the case for the natural
convection flow.

4.2.2 Turbulence quantities. There are no experimental data for turbulent quantities
in the study by Nielsen et al. (1978). We therefore simply present in Figure 9 the kinetic
energy contours at the meridian plane (z/W ¼ 0) for three formulations: k-1-enh,
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Figure 8.
Horizontal velocity
profiles at z/W ¼ 20.4
and x/H ¼ 2 (isothermal
flow)
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Iso-k contours at z/W ¼ 0
(isothermal flow)
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k-1-RNG-enh and SST-k-v. Qualitatively the models predict the same behaviour.
The turbulent kinetic energy is maximum near the air inlet (top left region of the
cavity) where the velocity gradient is highest (Figure 7(a) and (b)) and decreases as the
flow approaches the wall at x/H ¼ 1. Nevertheless, two zones of fairly important
turbulent kinetic energy are present near the top and bottom of this wall. The former is
associated with the anti-clockwise vortex predicted by all five formulations in the
upper right corner of the cavity. The latter is attributed to the high-velocity gradients
present in the lower right corner resulting from the combined effects of the flow
acceleration near the outlet and the backwards flow (Figure 7(c)). On the other hand,
the quantitative agreement of these predictions is poor. The k-1-enh formulation
predicts the largest turbulent kinetic field followed by the k-1-RNG-enh and SST-k-v.
The important differences between the predicted positions of the iso-k contours clearly
indicate that it is difficult to reproduce details of the turbulent quantities with two
equation turbulence models. This limitation has been noted in several previous studies
(Peng and Davidson, 2000; Joubert et al., 2005) and illustrates the need of higher order
models for the prediction of turbulent quantities.

5. Conclusion
Turbulent natural convection in an air filled 2D cavity and isothermal turbulent forced
flow in a ventilated cavity were analysed numerically with three different two-equation
models.

The natural convection case was modelled taking into account heat conduction in
the horizontal walls which has an important effect on the air temperature near these
walls. The grid independence tests based on the turbulent kinetic energy profiles,
rather than the less sensitive mean quantities, showed that a 30 £ 30 grid provides a
good compromise between accuracy and computer memory. The best predictions of the
mean air temperature distribution were obtained with the two k-1 models associated
with standard wall functions. On the other hand, the best results for the mean velocity
profile were obtained with the SST-k-v model followed by the two k-1 models
associated with the enhanced wall treatment. The best predictions of the mean
temperature profile at x/H ¼ 0.5 were obtained with the k-1-wf and SST-k-v models.
The performance of all these two-equation models with regard to the prediction of
turbulence quantities is rather poor even though they are in good agreement with
previous LES results. In conclusion we believe that the near-wall treatments used in the
present study need further improvement. This is particularly true for the wall
functions approach.

It was noted that comparisons of measured and calculated quantities at mid-height
of the natural convection cavity are not sufficient to establish the validity of models
and fully describe all the phenomena present in the cavity. The effect of flow along the
horizontal walls and the four corners of the cavity are not captured with equal
sensitivity by the different models which tend to underestimate the air temperature in
the lower half of the cavity and overestimate it in the upper half.

In the case of the isothermal forced flow the enhanced wall treatment was more
successful in describing near-wall effects. In the core region of the flow the k-1-RNG
model with enhanced wall treatment produced satisfactory results. The predictions of
the SST-k-v model were generally in good agreement with experimental data while the
k-1 model overestimated the thickness of the jet.
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If the two types of flow are considered the performance of the models under
evaluation is more or less equivalent. The prediction of mean velocities and
temperatures is always satisfactory for engineering applications such as HVAC
calculations. On the other hand, the prediction of turbulent quantities is less precise.
The near wall formulations which perform better for one type of flow are less
successful for the other type.
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